ビッグデータ活用事例集|12業界の実例から知識を得よう

ビッグデータ活用事例集|12業界の実例から知識を得よう

ビッグデータ活用は幅広い企業で必須になりつつあります。マーケティング戦略立案や業務の効率化、新商品の開発などにおいて、ビッグデータを有効活用することで、業績を伸ばす企業も増えてきました。この記事では小売業界や飲食業界、自動車業界など、12の業界のビッグデータ活用事例を解説します。また、ビッグデータの定義や、ビジネスにおけるビッグデータ活用も基礎からわかりやすく解説します。
目次

ビジネスにおけるビッグデータは、既存の商品やサービスの改良・新製品の開発、業務効率化など、ビジネスチャンスを広げることを目的に活用されています。そのため、ビッグデータの定義は「事業に役立つ知見を導出するためのデータ」(鈴木良介著「ビッグデータビジネスの時代」)などと表現されます。一方、データの特徴に着目して、ビッグデータを巨大で多様なデータ群とする定義もあります。その理由は、従来のソフトウエアやデータベースでは扱えないほどの巨大なデータ群であるからです。また、小型センサーや家電などのIoTやSNSのテキストなど、データの収集経路や扱うデータの種類が多様化しているからです。

具体的なビッグデータの活用事例のひとつにカーナビが挙げられます。ビッグデータを活用したカーナビでは、毎月2億km以上ものデータを収集して事故が起こりやすい場所を特定したデータが配信されています。このような膨大なデータは、従来の技術では収集はおろか解析すらもできませんでした。また、自動翻訳サービスもビジネスに利用できる水準に達しています。自動翻訳サービスの質の高さは、ユーザーが翻訳結果をどのように修正したのかという情報を、AIが日々学習することで実現されています。従来はコンピューターが処理しにくかった、規則化しにくくあいまいなデータ(非構造データ)を活用できるようになったことが、翻訳の質を大きく向上させられた要因です。進化したテクノロジーによって扱えるようになったビッグデータを活用して、新たなビジネスチャンスを生み出そうとする企業が幅広い業種で増えています。

関連記事:ビッグデータをわかりやすく解説!身近な活用例や各業界の事例を紹介

各業界でビッグデータはどのように活用されているのでしょうか。小売業界や飲食業界、自動車業界など、12の業界の活用事例を紹介します。

小売業界の一般的なビッグデータ活用は、消費者の傾向を分析することです。購買履歴や年齢、性別などからターゲット層を特定することや、シーズンごとの購買頻度を分析して仕入れや在庫管理などに活用するためにビッグデータを使います。ヤクルトは幅広い経路から収集したビッグデータのデータアナリティクス(データ分析)によって、15~20%の売上増を達成しました。消費者の購買データだけでなく、気象データ、Googleの検索結果、広告へのアクセスなどを総合的に分析したことで、購買行動に対する深い知見を得られました。

たとえば、夏のキャンペーンが失敗に終わったとき、ヤクルトは当初、広告の訴求力がなかったか、気温が高すぎたせいだと分析しました。しかし、購買層の移動データを入れて分析したところ、休暇で旅行に出かけた割合が多かっただけであることがわかりました。このような多角的なデータアナリティクスにより、無駄がなく的確なマーケティング戦略が立てられ、売上を増やせたということです。外部のビッグデータを活用することでも業績を向上できる、好例といえるでしょう。

関連記事:消費者インサイトとは?調査方法と活用事例を紹介

飲食業界では、来客者の注文情報などから顧客ニーズや顧客満足度を分析する方法が一般的です。たとえば、POSレジや購買時の記録データであるIDレシートなどの情報を蓄積し、メニュー開発に役立てます。しかし、個別の飲食店では十分なサンプル数が集まりにくいため、ビッグデータを活用できていない状況がありました。そこで、ぐるなびは20年間蓄積した店舗情報やユーザー情報などを元にした、ビッグデータの分析結果を公開します。何が売れやすい状況なのか、どの年齢層が来客しているのかなどの分析ができるツールをオンライン上で提供したのです。たとえば店舗でのアンケートだけでは信頼性が低かった結果も、ツールのトレンド情報と照合することで、精度を高められます。

関連記事:ID-POSとは? POSとの違いやデータ分析手法、活用事例をご紹介

自動車業界におけるビッグデータの利用は多岐に渡り、自動運転、故障の検知、交通状況の把握、自動車保険料の設定などに活用されています。ホンダもさまざまな分野においてビッグデータ活用を進めています。なかでも注目を集めた事例の1つは、東日本大震災における通行実績情報マップでした。このシステムの特徴は、警察や民間企業からの情報だけでなく、地元住人や実際に道路を走行したドライバーの情報をリアルタイムで反映できることです。大量のデータを双方向につなぐ技術によって、精度の高い情報をタイムリーに提供でき、多くの人の走行支援を実現しました。

製造業界においては、製造コスト削減のためにビッグデータが活用されています。Intelでは品質テストのコスト削減のためにビッグデータを活用しました。従来の方法では、製造したチップをひとつチェックするのに、1万9000回ものテストを実施する必要がありました。そこでIntelは、製造プロセスで収集したデータを品質テストにフィードバックすることを考案します。その結果、製造プロセスにおいて品質に疑いが発生したチップに対してだけ、テストを重点的に実施できるようになり、コストを300万ドルも削減できました。

医療業界で代表的なビッグデータは患者の疾患・治療のデータベースと、レセプト(診療報酬明細書)の集計データです。目的に応じてこれらのデータを分析することで、さまざまな知見を抽出できます。医療業界で注目されているのは、健康診断の結果や医療機関での治療記録などを一元管理できるPHR(Personal Health Record)ヘルスという仕組みです。子どもから大人、高齢者になるまで、医療機関が変わっても、自分の体の記録が常に参照できます。個人の健康管理がしやすくなり、適切な医療を受けることにも役立ちます。

教育業界では学習プロセスの実施と成果の記録が蓄積され、教育の質向上に役立てられています。岡山大学は長野県高森町と連携して、子どもの学習意欲の検証を行いました。具体的にはeラーニングシステムを導入し、学習の区切りごとにアンケートを繰り返すことで、自主学習態度と成績の相関関係を明らかにする試みです。アンケート結果で自主学習意欲が不十分だとわかった生徒に対しては、教師や保護者が情報を共有し、フィードバックを行うようにします。その結果、フィードバックの回数に比例して、自主学習意欲および成績が向上することがわかりました。今後は成績向上に関心を持つ自治体に対して、学習意欲向上の観点からのアプローチ方法を提供する予定です。また、タブレット学習の質向上にもつながることが期待されています。

EC業界においては、自社サイトに訪れた人の購買履歴やサイト上の行動履歴を蓄積することで、需要予測や価格の最適化、パーソナライズされた広告配信などに活用されています。楽天のようなECモールは、膨大な消費者のデータが集約されるプラットフォームです。楽天はこの利点を生かし、ECモールで得たビッグデータに楽天系列のサービスの利用履歴も加えてIDにひもづけることで、精度の高い広告配信を実現しています。さらに2018年から提供されている「Rakuten AIris」では、AIによる拡張ターゲティングが可能です。購入実績のある人と類似した特徴を持つユーザーだけを選んで、広告配信を行えます。

金融業界はクレジットカード情報をもとにした顧客行動の分析や、企業に対する融資の査定、相場状況の解析などにビッグデータが活用されています。中国のCITIC銀行はオンライン決済や投資履歴、SNSでの行動などのデータを網羅的に収集しました。広範囲にデータを収集したことで、オンラインや実生活で影響力が強い「ホット」な顧客を見つけ出せるようになったといいます。このホットな顧客を中心として、友人・知人から順に連鎖的にアプローチしていくことで、効率的で緻密なマーケティングが実現できました。

関連記事:効率的な顧客アプローチが可能!「CRMマーケティング」を知ろう

旅行業界においては、スマートフォンのGPS機能を使った移動データが活用されています。観光客の行動パターンや観光地のトレンド把握などに役立てられています。旅行業界では海外の旅行者の情報を得られないという課題を持っていました。エクスペディアでは、予約管理システムを利用した膨大な旅行者の居住地や客室単価、宿泊数などの重要なデータを、日本の宿泊施設に提供しています。データベースにアクセスすると、どのような層の顧客がどの宿泊施設を利用したのかがわかります。また、地図上で競合会社を登録してモニターすることもでき、たとえばキャンペーンを実施した際に成果を測定するなどが可能です。

日々刻々変わる天候や作物の状況は、従来は計測することが不可能でした。現在はIoTやセンサー技術の向上によってデータ収集・分析の範囲が広がり、栽培管理や収穫予測などに役立てられています。NTTと農研機構は、スマート農業や農業研究・開発の効率化のために、各地の農家のデータを連結してビッグデータとして分析しています。複数のデータを検証することで、分析の精度を高めることが可能です。データ共有のシステムには、高度な栽培技術が流出しないように、データを暗号化したまま解析する技術も用いられています。

スポーツ業界では、選手育成や試合の勝率を高めるための戦略立案などにビッグデータが活用されています。また、電通が開発した「ZUNO(ズノ)」のように、ビッグデータを解析してスポーツ解説に役立てるシステムも導入されています。ZUNOは野球関連のスポーツ番組用に開発したシステムで、300万球を超える打席データをAIによって機械学習させました。AIによる勝敗や配球の予測などが可能です。

自治体・行政のもとには国勢調査や交通事故の数など、多くのビッグデータが集まります。自治体や行政は、行政サービスの向上や交通渋滞の緩和などの公共利益のために、ビッグデータを活用しています。神奈川県川崎市はナビタイムジャパンと提携して交通データを分析することで、交通安全対策や渋滞緩和に役立てました。同意を得たドライバーの走行実績を収集することで、区間ごとの速度分析、走行挙動分析など、より詳しいデータ解析が可能になったといいます。たとえば、急ブレーキの頻度が高い曲がり角にミラーを追加するなどにより、交通事故を減らす成果が出せました。

ビッグデータ活用事例集|12業界の実例から知識を得よう

今後のビッグデータ活用は「AI×ビッグデータ」「5G×ビッグデータ」のように、掛け合わせによってさらに進化していくと予測されています。たとえばディープラーニングによるAIは、大量のデータから自ら学習できることから、より多面的な解析が可能になるでしょう。医療業界におけるCT画像解析用AIや、EC業界におけるチャットボットなどによって、ヒトが行っていた業務の一部が代替されています。

「5G×ビッグデータ」の掛け合わせも、近い将来でビッグデータ活用を大きく進展させるといわれています。5Gの普及によって、IoT経由で獲得できるデータ収集量が飛躍的に向上するからです。たとえば農業分野では、作物自体に取り付ける生体センサーなどから、より大量のデータが収集・解析できるようになるかもしれません。AIや5Gなどの新たなテクノロジーとビッグデータ解析技術の掛け合わせにより、自社業務の効率化や新たな商品・サービスの創出などが期待できます。

関連記事:データマーケティングとは?目的や手法・企業事例を紹介

購買データを分析できる「IDレシートBIツール」は、顧客の購買行動の把握によって効果的なマーケティングに貢献します。数万規模のお買い物レシートのデータを蓄積した「IDレシート」から、商品の買われ方や顧客の嗜好(しこう)、価値観などを把握でき、顧客やペルソナの可視化を実現。また莫大(ばくだい)なデータを整理するBIツールによって、さまざまな業務を抱える多忙なマーケターでも求める情報の特徴を簡単につかむことが可能です。

さらに、POSデータでは見えづらかった自社商品の「買う人」と「買われた」をしっかりと把握できるため、自社と競合商品の実売価格・売上が確認でき、ペルソナの設定だけではなく、商談時の資料としても利用可能です。

またこちらの記事では、多数のトップシェア製品を展開する世界的食品メーカー、味の素株式会社様が、弊社の「IDレシートBIツール」をどのように活用されているのかご紹介しております。
導入企業様の声:味の素株式会社様 顧客解像度を高め、客観的な仮説立案に一役。 バリューチェーン連携向上も期待。
個々のデータだけで生活者の全体像や新しい市場の動向を把握することの難しさや、顧客解像度を高めることにおいてN=1の有効性など、「IDレシートBIツール」にどういった導入効果があったのか、ぜひ参考にしてみてください。

幅広い業界において、ビジネスチャンスを創出するためにビッグデータが活用されています。AIや5Gなどの新技術とビッグデータ活用が掛け合わされることで、今後さらに業務効率化や新商品・サービスの提供が進んでいくと予測されています。自社でビッグデータを収集できなくても、外部のデータベースを利用することで、ビッグデータ活用が可能です。自社にあったツールの導入も検討していきましょう。

「IDレシートBIツール」の詳しい情報はこちらをご覧ください。

お問い合わせ

流通横断かつユーザ軸での貴社/競合ユーザ様の購買動向の違いが分かります。

詳細資料・サンプルレポートをご希望の方は、お気軽にお問い合わせください。